
PERCEPTUAL AND ACTION ROUTINES IN DIAGRAMMATIC REASONING
FOR ENTITY-REIDENTIFICATION

Bonny Banerjee and B. Chandrasekaran*

Department of Computer Science & Engineering
The Ohio State University, Columbus, OH 43210

{Banerjee, Chandra}@cse.ohio-state.edu

ABSTRACT

The Objective Force requirements of responsiveness,
agility and versatility call for digitized graphical decision
support interfaces that automate or otherwise help in
various reasoning tasks, including reasoning with visual
and diagrammatic representations that are ubiquitous in
Army situation understanding, planning and plan
monitoring. In earlier papers, we described a
diagrammatic reasoning architecture, and demonstrated
the approach for instances of maneuver recognition and
information fusion for entity-reidentification problems.
The current paper characterizes the computational
properties of the core perception and path-finding
algorithms that are an important part of the technology’s
application for a class of fusion problems. This analysis is
important since the practicality of automating
diagrammatic reasoning for Army applications depends
on developing algorithms with manageable complexity.

1. INTRODUCTION

Reasoning with visual representations consisting of
terrain maps with an overlay of diagrammatic elements is
ubiquitous in Army situation understanding, planning and
plan monitoring. Diagrams are overlaid on top of terrain
maps, and they represent information using a combination
of iconic and spatially veridical elements. The overall
problem solving process is a sequence of steps each of
which is one of three types: perception on the diagram, in
which information about the spatial properties of or
relations between diagrammatic objects is obtained;
inference, making use of currently available symbolic
information including information obtained by
perception; and actions on the diagram, in which
diagrammatic elements are added, deleted or modified to
satisfy certain constraints, such as “find a path that goes
from point A to point B, while avoiding region C.”
Automating or semi-automating such reasoning tasks is
essential if the ambitious goals of Army Transformation
based on information dominance are to be achieved.

We have been experimenting with an architecture
[Chandrasekaran, et al, 2002; Chandrasekaran, et al,
2004] for automated reasoning with diagrams and applied
it to example problems in maneuver recognition and
information fusion for entity reidentification. In this
paper, we present the algorithms and their computational

Fig 1. A diagram in ASAS.
complexities for the set of perceptual and action routines
that we have found useful in spatial reasoning tasks
involved in certain types of information fusion. This
analysis is important since the practicality of automating
diagrammatic reasoning for Army applications depends
on developing algorithms with manageable complexity.

2. DIAGRAMS IN A FUSION EXAMPLE

The entity reidentification problem arises in systems

such as U.S. Army’s All-Source Analysis System
(ASAS). The prototypical task can be characterized as
follows. A report is received about the sighting of an
entity of interest, along with the time, location and partial
identity information, such as that it was a tank, or tank of
a given type, etc. The task is to decide if the newly
sighted object is one of the objects in the database,
sighted and identified earlier, or a new object. The overall
reasoning process is modeled as abductive inference
[Josephson & Josephson, 1996]. The reasoning system
has a number of diagrammatic subtasks. Fig 1 illustrates
some of them. The three regions are marked as no-go
areas for the vehicle type of interest. The newly sighted
vehicle is the small circle at the bottom right of the figure,
and the database has identified two previously sighted and
identified vehicles, the two small circles at bottom left
and top of the figure, as being potentially the same as the
newly sighted vehicle. The problem solver asked the
diagrammatic reasoner to identify a possible path from the
new sighting location to the vehicle at the top. The action
component of the diagrammatic reasoner found a path

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
00 DEC 2004

2. REPORT TYPE
N/A

3. DATES COVERED
 -

4. TITLE AND SUBTITLE
Perceptual And Action Routines In Diagrammatic Reasoning For
Entity-Reidentification

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Department of Computer Science & Engineering The Ohio State
University, Columbus, OH 43210

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release, distribution unlimited

13. SUPPLEMENTARY NOTES
See also ADM001736, Proceedings for the Army Science Conference (24th) Held on 29 November - 2
December 2005 in Orlando, Florida. , The original document contains color images.

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF PAGES

8

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

between the two no-go regions. The two elliptical regions
marked Sensor1 and Sensor2 are known sensor fields.
The problem solver wants to know if the path intersects
any of the sensor fields. The diagrammatic reasoner
replies, as we would, that the path intersects Sensor1, but
not Sensor2. Then the problem solver asks (not shown in
Fig 1) if the path could be modified so as to avoid the
field Sensor1 but still go between the two no-go regions.
The relevant path modification algorithm finds that this is
not possible. Another common example of perception is
that of emergent objects. For instance, when two curves
intersect, a new point object, the intersection point, is
created. This may be of significance in some domain, e.g.,
that point might be an intersection between two routes,
providing alternatives for path planning. Posing a
sequence of such questions to, and making use of the
answers from, the diagrammatic component, the problem
solver eventually decides that the new sighting could not
correspond to the one at the top.

3. DIAGRAMMATIC REPRESENTATION

It is important to distinguish between a diagram and a
general image. A diagram is first and foremost a
representation, i.e., it is not an image of a natural object,
but one whose objects are intended to represent
information to support some reasoning task. A diagram
differs from linguistic-symbolic representations in that the
spatial properties of and relations between diagrammatic
objects may be used to represent information in the
domain.

A Diagram is a pair (I, DDS) where I is the image,
defined as a specification – implicit or explicit – of
intensity values for points in the relevant regions of 2D
space, and DDS is the Diagram Data Structure, which is
a list of labels for the diagrammatic objects in the image;
associated with each object label is a specification of the
subset of I that corresponds to the object. A
diagrammatic object can be one of three types: point,
curve, and region. Point objects only have location (no
spatial extent), curve objects only have axial specification
(no thickness), and region objects have location and
spatial extent. The labels are internal to DDS. External
labels such as A, B, etc. in Fig 2 are additional features of
the objects that may be associated with them. I is any
description from which a specification of intensity values
for the relevant points in the 2D space can be obtained. In
our work we represent curve objects by a sequence of
points or line segments, and regions by the perimeter
closed curves, also as line segments.

Diagrams are constructed by placing diagrammatic

objects on a 2D surface in specific configurations to
represent specific information. DDS will initially consist
of the labels of objects so placed and their spatial
specifications.

A perceptual routine1 (PR) takes a specified number
of diagrammatic objects in the diagram and returns a
perception, which may be an object, a property or a
relation. An action routine (AR) creates, deletes or
modifies objects in the diagram so as to satisfy given
constraints, some of which may be perceptual.

There are no finite sets of these routines that suffice
for all of diagrammatic reasoning, but they can be
partially ordered with respect to complexity and domain-
specificity, such that routines later in the partial order
make use of routines earlier.

Object, Label A, type:
Curve, EndPoint1:D,
EndPoint2:E

Object, Label C, type:
Region Periphery: F

Object, Label F,
type: Curve
Object, Label D,
type: Point

Object, Label E,
type: Point I

Object, Label C,
type: Point

DDS

Fig. 2. A DDS for a simple diagram composed of a point,
a curve and a region. There are other objects:

distinguished points such as end points, the closed curve
defining the periphery of the region, etc.

As objects in DDS are created, deleted or modified,
new objects might emerge, objects may change their
spatial extents, and existing objects might be lost. PRs
will make these determinations and DDS will be updated
to reflect these changes. DDS mediates the interaction of
the problem solver with I. For example, given a question
such as “Is A to the left of C?,” the information in DDS is
used to identify the image descriptions for A and C as
arguments for the PR Leftof(X,Y). In principle, the
same image I might correspond to different DDS’s
depending on which subsets are organized and recognized
as objects, such as in the well-known example of a figure
that might be perceived as a wine glass or profiles of two
faces.

1 We call them perceptual routines, rather than the more
common and specific visual routines, because our long-
term goal is to extend the notion of the cognitive state to
multiple perceptual modalities, and vision is just one
modality.

4. PERCEPTUAL ROUTINES (PRs)

PRs can be categorized into two classes, emergent
object recognition, and property/relation extraction. The
first includes domain-independent PRs that identify point,
curve and region objects that are created or lost when a
configuration of diagrammatic objects is specified or
modified. The PRs of the second class produce symbolic
descriptions belonging to one of three kinds: (i) specified
properties of specified objects (e.g., curve C has length of
m units), (ii) relations between objects (e.g., point P is in
region R, curve C1 is a segment of curve C2, object O1 is
to the left of object O2, values of the angles made by
intersection of curves C1 and C2), and (iii) symbols that
name an object or a configuration of objects as an
instance of a class, such as a triangle or a telephone.

The PRs of the second class come in different

degrees of domain specificity. Properties such as length of
curve, area of a region, and quantitative and qualitative
(right, acute, obtuse, etc.) values of angles made by
intersections of curves are very general, as are
subsumption relations between objects, such as that curve
C1 is a segment of curve C2. Relations such as
Insideof(A, B), Touches(A, B), and Leftof(A, B)
are also quite general. PRs that recognize that a curve is a
straight line, a closed curve is a triangle, etc., are useful
for reasoning in Euclidean geometry, along with relations
such as Parallel(Line1, Line2). The PRs of the second
class are open-ended in the sense that increasingly
domain-specific perceptions may be conceived: e.g., an L-
shaped region, Half-way-between(Point A, Point B).
Our goal for the current set of PRs is what appears to be a
useful general set, with the option for additional special
purpose routines later on. The following is a list of PRs of
different types that we have currently identified and
implemented as being generally useful.

Emergent Object Recognition Routines. These PRs

return one or more objects after creating or recognizing
them. Examples of such routines are finding intersection-
points when curve and/or region objects intersect, region
when a curve closes on itself, new regions when regions
intersect, new regions when a curve intersects with a
region, extracting distinguished points on a curve (such as
end points) or in a region, extracting distinguished
segments of a curve (such as those created when two
curves intersect), extracting periphery of a region as a
closed curve. Reverse operations are included – such as
when a curve is removed, certain region objects will no
longer exist and need to be removed.

We have implemented the intersection routine using
sweep-line algorithm [Bentley & Ottmann, 1979] that
takes as input a number of curve and region objects and
computes all the intersection points in O((n+k)*log(n))
time (see Intersect in Table 1). Due to an

intersection, a number of emergent objects are created.
For e.g., when two curves intersect, four sub-curves and
an intersection point emerge. However, computing all the
emergent curves and regions is computationally too
expensive, so we restrict ourselves to computing only the
emergent first order objects – i.e., objects that do not have
other emergent objects of the same type as subparts, or
objects specifically requested by the problem solver.

Object Property Extraction Routines. These

routines might return a numerical value as in
Length(Curve C), or a boolean as in case of
Closed(Curve C). Length(Curve C) computes the
length of C by computing the sum of Euclidean distances
between each consecutive pair of points. Area(Region R)
computes the signed area of R, which is assumed to be an
arbitrary non-self-intersecting polygon with n vertices,
using the formula:

()(mod) 1 (mod) 1
1

1
2

n

i i n i n i
i

Area x y x y+ +
=

= −∑

where (),i ix y is the coordinate of the ith vertex.
Counter-Clock-Wise(Region R) checks whether R
is oriented in counterclockwise direction by checking
whether the area of R is positive. Angle(Point P1, Point
P2, Point P3) computes the angle between the line
segments P1P2 and P2P3 at point P2.
Straightline(Curve C) checks whether all the points
on C are collinear or not. Closed(Curve C) checks
whether C intersects itself by using the Intersect routine.
Additional property extraction routines can be added as
needed.

Relational Perception Routines. These routines

return a boolean value after checking whether one or
more objects satisfy a certain relation. Insideof(Point
P, Region R) checks whether P lies inside R or not. In
order to compute whether a given object of any type lies
within a given region or not, we check for every point of
that object using the routine Insideof. Outsideof is
implemented similarly.

Leftof(Point P1, Point P2, POV) checks whether P1
is to the left of P2 or not with respect to the given point of
view POV. The point of view specifies the direction
towards which the observer is faced, in terms of an angle
with respect to a fixed horizontal axis. Rightof(Point
P1, Point P2, POV), Above(Point P1, Point P2, POV),
Below(Point P1, Point P2, POV) can be computed
similarly. Topof(Region R1, Region R2) is required in
domains like the Blocks World where one block might be
on top of another block. In such cases, we would consider
two blocks as regions R1, R2, and infer that R1 is on top of
R2 if R1 and R2 touch each other at more than one point
and R1 is above R2 with respect to the vertical point of
view.

Table 1. Selected Perceptual Routines and Their Computational Complexities

Class PR Input Output Computational complexity PRs used
Distance Point P1,

Point P2

A real
number

O(1) -

Angle

Point P1,
Point P2,
Point P3

A real
number

O(1)
-

Area Region R A real
number

O(n)
n = # segments in R

-

Quantitative
PRs

Length Curve C A real
number

O(n)
n = # segments in C

Distance

StraightLine Curve C A boolean O(n)
n = # segments in C

-

Closed Curve C A boolean O((n+k)*log(n))
n = # segments in C, k = # intersections

Intersect

Counter-
Clock-Wise

Region R A boolean O(n)
n = # segments in R

Area

Leftof

Point P1,
Point P2,
Point of
View

A boolean

O(1)

-

Rightof

Point P1,
Point P2,
Point of
View

A boolean

O(1)

Leftof

Above

Point P1,
Point P2,
Point of
View

A boolean

O(1)

-

Below

Point P1,
Point P2,
Point of
View

A boolean

O(1)

Above

On Point P,
Curve C

A boolean O(n)
n = # segments in C

-

Touches Object O1,
Object O2

A boolean O(n1*n2)
n1 = # segments in O1, n2 = # segments in O2

On

Topof Region R1,
Region R2

A boolean O(n1*n2)
n1 = # segments in R1, n2 = # segments in R2

Touches,
Above

Insideof Point P,
Region R

A boolean O(n)
n = # segments in R

-

Outsideof Point P,
Region R

A boolean O(n)
n = # segments in R

Insideof

Subcurveof Curve C1,
Curve C2

A boolean O(n1*n2)
n1 = # segments in C1, n2 = # segments in C2

On

Subregionof

Region R1,
Region R2

A boolean O(n1*n2)
n1 = # segments in R1, n2 = # segments in R2

Insideof,
Intersect

Qualitative
PRs

Parallel Curve C1,
Curve C2

A boolean O(n)
n = # points in C1 or C2

-

Table 1 continued.

Class PR Input Output Computational complexity PRs used

ScanPath

Curve C,
Diagram D,
Relation S

Object O1,
Object O2,
…
Object Or

O(n*m)
n = # segments in C, m = # objects in D

PR for
extracting
relation S

Object
Recognition
PRs

Intersect

Curve C1,
Curve C2,
…
Curve Cr,
Region R1,
Region R2,
…
Region Rt

Point P1,
…
Point Ps,
Curve C1,
…
Curve Cp,
Region R1,
…
Region Rq

O((n+k)*log(n))

r t

i j
i=1 j=1

n # segments in C # segments in R= +∑ ∑
k = # intersections

-

Table 2. Selected Action Routines and Their Computational Complexities

AR Input Output Computational complexity PRs/ARs used
Translate Object O,

Real number t
Object O’ O(n)

n = # points in the input object
-

Rotate

Object O,
Real numbers
(x, y, θ)

Object O’

O(n)
n = # points in the input object

-

Medial Polygon,
Polygon Vertices

Medial Axis O(n*log(n))
n = # sampled points in the input polygons

-

PathFinder

Polygon,
Polygon
Vertices,
Start Pt,
End Pt

O(2k) Paths,
Path
Lengths

O(n2+kk)
n = # sampled points in the input polygons
k = # polygons (k<<n)

Medial

Homotopic

Path1,
Path2,
Point P1,
Point P2,
…
Point Pn

A boolean

O(n*p)
n = # input points

2

i
i=1

p # segments in Path=∑

Insideof

ModifyPath_
to_avoid_
obstacles

Path,
Diagram OldD,
Diagram NewD

O(2k) Paths,
Path
Lengths

O(n2+kk)
n = # sampled points in the input polygons
k = # polygons (k<<n)

PathFinder,
Homotopic

ModifyPath_
to_pass_
through_
given_points

Path,
Diagram D,
Point P1,
Point P2,
…
Point Pr

O(2k) Paths,
Path
Lengths

O(r*(n2+kk))
n = # sampled points in the input polygons
k = # polygons (k<<n)
r = # points to pass through

PathFinder,
Homotopic

ShortenPath

Path,
Point P1,
Point P2,
…
Point Pn

ShorterPath

O(n*p*r)
n = # input points
p = # segments in the input path
r = # iterations desired/required for convergence

-

On(Point P, Curve C) checks whether P lies on C or
not. It is noteworthy that the point might not necessarily
be one of the points describing the curve but still lie on
the curve by lying on one of its segments. On(Curve C1,
Curve C2) is computed by checking whether each segment
of C1 lies on C2 or not. Subcurveof(Curve C1, Curve
C2) checks whether C1 is a sub-curve of C2 or not. For C1
to be a sub-curve of C2, each segment of C1 must lie on C2
and C1 has to be smaller in length than C2. So we check
whether there exists a segment of C1 that does not lie on
C2 using PR On to infer the result.

Subregionof(Region R1, Region R2) computes
whether R1 is a sub-region of R2 or not. In order for R1 to
be a sub-region of R2, R1 has to be inside R2. If some
points or segments belonging to the periphery of R1 lie on
the periphery of R2, still we consider R1 to be a sub-region
of R2. Touches(Object O1, Object O2) checks whether
objects O1, O2 touch each other or not. We consider O1
and O2 to touch each other if they have at least one point
in common on the periphery but no point of one object
lies inside the other object. Subsumption relations are
especially important and useful to keep track of as objects
emerge or vanish.

Abstractions of groups of objects into higher level
objects. Objects may be clustered hierarchically into
groups, such that different object abstractions emerge at
different levels. For example, some events in military and
meteorology domains, are characterized by a large
number of individual moving elements, either in pursuit
of an organized activity (as in military operations) in
groups at different levels of abstraction, or subject to
underlying physical forces (as in weather phenomena).
Visualizing and reasoning about happenings in such
domains are often facilitated by abstracting the mass of
data into diagrams of group motions, and overlaying them
on diagrams that abstract static features, like terrain, into
regions and curves. Constructing such diagrams of
motions at multiple levels of abstraction calls for
generating multiple hierarchical grouping hypotheses at
each sampled time instant, then choosing the best
grouping hypothesis consistent across time instants, and
hence following the groups to produce spatial
representations of the spatiotemporal motions. For a
detailed discussion and implementation of such a high
level PR, the reader is referred to [Banerjee, et al, 2003;
Chandrasekaran, et al, 2002]. Other PRs in this class
might include generating associations between objects
based on properties like those of Gestalt principles.

Domain-specificity. Perceptions may be domain-

specific because they are of interest only in some
domains, e.g., “an L-shaped region.” They may also be
domain-specific in that they combine pure spatial
perception with domain-specific, but non-spatial,
knowledge. For example, in a military application, a

curve representing the motion of a unit towards a region
might be interpreted as an attack, but that interpretation
involves combining domain-independent spatial
perceptions – such as extending the line of motion and
noting that it intersects with the region – with non-spatial
domain knowledge – such as that the curve represents the
motion of a military unit, that the region’s identity is as a
military target belonging to a side that is the enemy of the
unit that is moving, etc. In our current implementation, it
is the task of the problem solver to combine appropriately
the domain-independent perceptions with domain-specific
knowledge to arrive at such conclusions, but in
application-dependent implementations of the
architecture, some of these perceptions might be added to
the set of PRs.

5. ACTION ROUTINES (ARs)

The problem solving process may modify the

diagram – create, destroy, or modify objects. Typically,
the task – the reverse of perception in some sense –
involves creating the diagram such that the shapes of the
objects in it satisfy a symbolically stated constraint, such
as “add a curve from point A to point B that goes midway
between regions R1 and R2,” and “modify the object O1
such that point P in O1 touches point Q in object O2.”
Again similar to PRs, ARs can vary in generality.
Deleting named objects that exist in the diagram, and
adding objects with given spatial specifications, e.g., Add
point at coordinate, Add curve <equation>, etc., are quite
straightforward. Our ARs include translation and rotation
of named objects for specified translation and rotation
parameters.

The military domain calls for a special type of action

routine that constructs paths satisfying constraints. The
entity-reidentification example calls for ARs that find one
or more representative paths from point A to point B,
such that intersections with a given set of objects are
avoided. A representative path is a curve object and has
the right qualitative properties (e.g. avoid specific
regions), but is a representative of a class of paths with
those qualitative properties, members of which may differ
in various quantitative dimensions, such as length. Given
a set of regions in a boundary of interest, the medial axis
of the boundary considering the regions as holes in it can
be computed in O(n*log(n)) time where n is the total
number of sampled points in the boundary and the regions
[Kirkpatrick, 1979]. It can be easily shown that at least
one path from any homotopy class can be derived from
the medial axis. Since the number of homotopy classes is
infinite, we extract only those paths from the medial axis
that do not intersect themselves, and consider them as
representative paths (see Fig 3). There will be at most
O(2k) representative paths where k is the number of
regions. Our Medial and PathFinder ARs compute
the medial axis and the representative paths respectively.

For their computational complexities, see Table 2. Two
paths are considered homotopic if one can be
continuously deformed into the other without crossing
any obstacle. The AR Homotopic computes whether
two given paths, with the same endpoints, are homotopic
to each other or not by checking whether there exists any
point inside the region(s) formed by the paths.

Fig 3. Path generation using AR Medial.

Rs can also modify given paths to satisfy certain
con

The set of ARs also includes routines that adjust a
path

Extending lines indefinitely in certain directions so
that

nderspecification of spatial properties of objects.
Mor

6. RELATED WORK

llman [Ullman, 1984] proposed, there exists a fixed
set

ayhoe [Hayhoe, 2000] argues that vision can be
thought of as the ongoing execution of task-specific

A
straints, for e.g., a given path might need to be

modified because of detection of a new obstacle (region
object) along its way, or a given path might be required to
pass through certain given points, and so on. We have
implemented routines that perform certain tasks useful for
the information fusion domain. The AR
ModifyPath_to_avoid_obstacles modifies a
path to avoid newly found obstacles, by extracting all the
representative paths from the new set of obstacles (old set
of obstacles and the newly found obstacles) and outputs
those representative paths which are homotopic to the
given path with respect to the old set of obstacles. The AR
ModifyPath_to_pass_through_given_points
modifies a path to pass through a sequence of points, by
considering each consecutive pair of points in the
sequence as the starting point and the end point and
extracting all representative paths between them, and then
concatenating the paths to end up with at most O(r*2k)
paths, where k is the number of obstacles and r is the
number of points in the sequence. The AR outputs only
those paths that are homotopic to the given path. Table 2
gives the computational complexities of these routines. It
is noteworthy that these ARs are not primitive ARs, rather
they are built using primitive ARs such as Medial and
PathFinder.

 in a homotopy class to be shorter, longer, etc., in
various ways. One useful AR is shortening a given path.
Finding the shortest path in a given homotopy class is a
very well-defined problem in computational geometry. In

our case, we are interested not always in the shortest path
but also in the shorter versions of a path in a given
homotopy class as that saves computational costs in many
cases while in some other cases, we just need a smooth
path that is close to being shortest but not an absolute
shortest as the shortest path might have sharp turns
through which it is sometimes difficult to navigate. The
AR ShortenPath shortens a path gradually until the
absolute shortest configuration is reached. After each
iteration, the algorithm produces a path shorter than the
one after the last iteration.

 a PR can decide if the extended line will intersect
with an object of interest is one that we need in our
domain. Other researchers have found specific sets of
ARs that are useful for their tasks, such as the AR in
[Lindsay, 1998], “Make a circle object that passes through
points A, B, and C.” An AR that we have not yet used,
but we think would be especially valuable, is one that
changes a region object into a point object and vice versa
as the resolution level changes in problem solving, such
as a city appearing as a point in a national map, while it
appears as a region in a state map.

U
e generally, each of the PRs can be reversed and a

corresponding AR imagined. For example, corresponding
to the PR Insideof(R1, R2) is the AR, “Make region R2
such that Insideof(R1,R2) is true,” (assuming region R1
exists); and corresponding to Length(curve C1) is the
AR, “Make curve C1 such that Length(C1) < 5 units.” In
most such instances, the spatial specification of the object
being created or modified is radically under-defined.
Depending on the situation, random choices may be
made, or certain rules about creation of objects can be
followed. However, the problem solver needs to keep
track of the fact that the reasoning system is not
committed to all the spatial specification details.

U
of low-level elemental operations, such as shifting of

processing focus, selection of salient locations, defining a
region of interest, marking locations already visited, etc.
that might be efficiently composed into visual routines,
such as visual search, texture segregation, contour
grouping, and in this manner extract an essentially
unbounded variety of shape properties and spatial
relations. A closely related procedural approach was
proposed in [Just & Carpenter, 1976], examining visual
tasks such as mental rotation, from a higher-level
perspective.

H

rout

ed in different
classes -- topological relations (e.g. disjoint), direction
rela

on of
com sable and extensible primitives, but more oriented
to t

An architectu oning with

iagrams, and its applications to some situation
und

DGMENTS

This resea ipation in the
sion Architectures Collaborative

Tec

Banerjee, B., Cha Josephson, J.R.,
Winkler, R., 2003: “Constructing Diagrams to

Bent
s,” IEEE

Chan
ning in

Chan
cture for

Hayh
, Visual Cognition, 7(1-3):43–64.

Just,
, 8:441-480.

sium

Lind
g e, 14(2):238-

New
ersity Press.

rocessing spatial relations,” Proc.

Pulla
ns among spatial

Rao,
 based on iconic representations,”

Salgi
nf. on

Ullm

ines which can be composed into extended behavioral
sequences. Based on Newell’s conceptualization of
brain’s temporal hierarchy [Newell, 1990], Hayhoe
showed using an example of autonomous driving that the
routines depend critically on the immediate behavioral
context. For the same domain, visual routines such as
traffic light detection, stop sign detection, intersection
detection, looming detection, vehicles detection, obstacle
detection, road detection, etc. were developed [Salgian &
Ballard, 1998]. Rao and Ballard [Rao & Ballard, 1995]
proposed visual routines such as object identification,
object location identification, looming detection --
composing these with different parameters allows
complex visual behaviors to be obtained.

Spatial relations have been classifi

tions (e.g. north, east), distance relations (e.g. far,
near), inclusion relations (e.g. in, at), and fuzzy relations
(e.g. next to, close to) [Pullar & Egenhofer, 1988].

Our notion of PRs is based on a noti
po
he needs of problem solving with diagrams. These

routines operate on interpreted images i.e. in the realm of
what is referred to as transformation (imagery) processes
in [Papadias & Kavouras, 1994]. Because of our interest
in generic objects, aspects of our proposals are intended to
be domain-independent as much as possible.

7. CONCLUSIONS

re for representing and reas
d

erstanding and planning problems of Army interest
have been described in our earlier work. The focus of the
current paper has been on the family of perceptual and
diagram construction algorithms – or, perception and
action routines as we have called them – that have been
found useful in these applications. We describe their
algorithmic basis, and characterize their computational
complexity properties. Research of the type reported will
help in building practical decision support systems with
manageable complexity. Even though they were
motivated by Army problems, we believe that the routines
described are applicable to diagrammatic reasoning in
general. While the set of such routines is open-ended, we
think that the routines we have described will provide a
good portion of the base set out of which more complex
routines can be built.

ACKNOWLE

rch was supported by partic
Advanced Deci

hnology Alliance sponsored by the U.S. Army
Research Laboratory under Cooperative Agreement

DAAD19-01-2-0009. We acknowledge the help of John
Josephson, Unmesh Kurup, Vivek Bharathan, and Robert
Winkler for collaboration that helped in clarifying the
ideas in the paper.

REFERENCES

ndrasekaran, B.,

Support Situation Understanding and Planning: Part
1: Diagramming Group Motions,” Technical Report
OSU-CISRC-5/03-TR29, Dept. of Computer Sc. &
Engg., Ohio State University, Columbus.

ley, J., Ottmann, T., 1979: “Algorithms for reporting
and counting geometric intersection
Transactions on Computers, C-28:643-647.
drasekaran, B., Josephson, J.R., Banerjee, B., Kurup,
U., Winkler, R., 2002: “Diagrammatic Reaso
Support of Situation Understanding and Planning”,
Proc. 23rd Army Science Conference, FL.
drasekaran, B., Kurup, U., Banerjee, B., Josephson,
J.R., Winkler, R., 2004: “An Archite
Problem Solving with Diagrams,” appears in
Diagrammatic Representation and Inference, Alan
Blackwell, Kim Marrott, Atsushi Shimojima,
Editors, Lecture Notes in AI 2980, Berlin: Springer-
Verlag, 151-165.
oe, M., 2000: “Vision using routines: A functional
account of vision”

Josephson, J.J., Josephson, S.J., 1996: Abductive
Inference: Computation, Philosophy, Technology,
Cambridge University Press.
M., Carpenter, P., 1976: “Eye fixations and cognitive
processes,” Cognitive Psychology

Kirkpatrick, D., 1979: “Efficient computation of
continuous skeletons,” Proc. 20th IEEE Sympo
on Foundations of Computing, 28-35.

say, R.K., 1998: “Using diagrams to understand
eometry,” Computational Intelligenc

272.
ell, A., 1990: Unified theories of cognition. Harvard
Univ

Papadias, D., Kavouras, M., 1994: “Acquiring,
representing and p
6th Intl. Symposium on Spatial Data Handling,
Edinburgh, U.K., Taylor Francis.
r, D., Egenhofer, M., 1988: “Towards formal
definitions of topological relatio
objects,” Proc. 3rd Intl. Symposium on Spatial Data
Handling.

 R.P.N., Ballard, D.H., 1995: “An active vision
architecture
Artificial Intelligence Journal, 78:461-505.
an, G., Ballard, D.H., 1998: “Visual routines for
autonomous driving,” Proc. 6th Intl. Co
Computer Vision, Bombay, India, 876-882.
an, S., 1984: “Visual Routines,” Cognition, 18:97-
159.

